Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
PLoS One ; 18(5): e0274065, 2023.
Article in English | MEDLINE | ID: covidwho-2319442

ABSTRACT

Downstream analysis of virus-infected cell samples, such as reverse transcription polymerase chain reaction (RT PCR) or mass spectrometry, often needs to be performed at lower biosafety levels than their actual cultivation, and thus the samples require inactivation before they can be transferred. Common inactivation methods involve chemical crosslinking with formaldehyde or denaturing samples with strong detergents, such as sodium dodecyl sulfate. However, these protocols destroy the protein quaternary structure and prevent the analysis of protein complexes, albeit through different chemical mechanisms. This often leads to studies being performed in over-expression or surrogate model systems. To address this problem, we generated a protocol that achieves the inactivation of infected cells through ultraviolet (UV) irradiation. UV irradiation damages viral genomes and crosslinks nucleic acids to proteins but leaves the overall structure of protein complexes mostly intact. Protein analysis can then be performed from intact cells without biosafety containment. While UV treatment protocols have been established to inactivate viral solutions, a protocol was missing to inactivate crude infected cell lysates, which heavily absorb light. In this work, we develop and validate a UV inactivation protocol for SARS-CoV-2, HSV-1, and HCMV-infected cells. A fluence of 10,000 mJ/cm2 with intermittent mixing was sufficient to completely inactivate infected cells, as demonstrated by the absence of viral replication even after three sequential passages of cells inoculated with the treated material. The herein described protocol should serve as a reference for inactivating cells infected with these or similar viruses and allow for the analysis of protein quaternary structure from bona fide infected cells.


Subject(s)
COVID-19 , Herpesviridae , Humans , SARS-CoV-2 , Virus Replication , Virus Inactivation/radiation effects , Ultraviolet Rays
2.
Viruses ; 15(1)2022 Dec 23.
Article in English | MEDLINE | ID: covidwho-2228317

ABSTRACT

Viral pathogens with the potential to cause widespread disruption to human health and society continue to emerge or re-emerge around the world. Research on such viruses often involves high biocontainment laboratories (BSL3 or BSL4), but the development of diagnostics, vaccines and therapeutics often uses assays that are best performed at lower biocontainment. Reliable inactivation is necessary to allow removal of materials to these spaces and to ensure personnel safety. Here, we validate the use of gamma irradiation to inactivate culture supernatants and pellets of cells infected with a representative member of the Filovirus and Coronavirus families. We show that supernatants and cell pellets containing SARS-CoV-2 are readily inactivated with 1.9 MRad, while Ebola virus requires higher doses of 2.6 MRad for supernatants and 3.8 MRad for pellets. While these doses of radiation inactivate viruses, proinflammatory cytokines that are common markers of virus infection are still detected with low losses. The doses required for virus inactivation of supernatants are in line with previously reported values, but the inactivation of cell pellets has not been previously reported and enables new approaches for analysis of protein-based host responses to infection.


Subject(s)
COVID-19 , Ebolavirus , Hemorrhagic Fever, Ebola , Viruses , Humans , SARS-CoV-2 , Virus Inactivation/radiation effects , Cell Culture Techniques
3.
Sci Rep ; 12(1): 16664, 2022 10 05.
Article in English | MEDLINE | ID: covidwho-2050544

ABSTRACT

The spread of SARS-CoV-2 infections and the severity of the coronavirus disease of 2019 (COVID-19) pandemic have resulted in the rapid development of medications, vaccines, and countermeasures to reduce viral transmission. Although new treatment strategies for preventing SARS-CoV-2 infection are available, viral mutations remain a serious threat to the healthcare community. Hence, medical devices equipped with virus-eradication features are needed to prevent viral transmission. UV-LEDs are gaining popularity in the medical field, utilizing the most germicidal UVC spectrum, which acts through photoproduct formation. Herein, we developed a portable and rechargeable medical device that can disinfect SARS-CoV-2 in less than 10 s by 99.9%, lasting 6 h. Using this device, we investigated the antiviral effect of UVC-LED (275 nm) against SARS-CoV-2 as a function of irradiation distance and exposure time. Irradiation distance of 10-20 cm, < 10 s exposure time, and UV doses of > 10 mJ/cm2 were determined optimal for SARS-CoV-2 elimination (≥ 99.99% viral reduction). The UVC-LED systems have advantages such as fast-stabilizing intensity and insensitivity to temperature, and may contribute to developing medical devices capable of containing SARS-CoV-2 infection. By demonstrating SARS-CoV-2 inactivation with very short-term UVC-LED irradiation, our study may suggest guidelines for securing a safer medical environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , COVID-19/prevention & control , Disinfection/methods , Humans , Pandemics , Ultraviolet Rays , Virus Inactivation/radiation effects
4.
J Virol Methods ; 309: 114610, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2007918

ABSTRACT

Inactivation of human respiratory viruses in air and on surfaces is important to control their spread. Exposure to germicidal ultraviolet (UV-C) light damages viral nucleic acid rendering them non-infectious. Most of the recent viral inactivation studies have not considered potential artifacts caused by interactions between UV-C light and culture media used to suspend and deposit virus on surfaces. We show that the reactive oxygen and nitrogen species (ROS and RNS) form when commonly used virus culture media is exposed to 265 nm irradiation from light emitting diodes (LEDs) at UV-C doses (4 or 40 mJ/cm2) commonly considered to achieve multiple log-inactivation of virus. Surface viral inactivation values were enhanced from 0.49 to 2.92 log10 of viruses in DMEM, EMEM or EMEM-F as compared to absence of culture media (only suspended in Tris-buffer). The mechanisms responsible for the enhanced surface inactivate is hypothesized to involve photo-activation of vitamins and dyes present in the culture media, deposited with the virus on surfaces to be disinfected, which produce ROS and RNS. Given the rapidly growing research and commercial markets for UV-C disinfecting devices, there is a need to establish surface disinfecting protocols that avoid viral inactivation enhancement artifacts associated with selection and use of common cell culture media in the presence of UV-C light. This study addresses this weak link in the literature and highlights that inadequate selection of virus suspension media may cause a bias (i.e., over-estimation) for the UV-C dosages required for virus inactivation on surfaces.


Subject(s)
Nucleic Acids , Viruses , Bias , Cell Culture Techniques , Coloring Agents , Culture Media , Disinfection/methods , Humans , Nitrogen , Oxygen , Reactive Oxygen Species , Ultraviolet Rays , Virus Inactivation/radiation effects , Vitamins
5.
Sci Rep ; 12(1): 11935, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1931480

ABSTRACT

Ultraviolet (UV) irradiation-based methods used for viral inactivation have provided an important avenue targeting severe acute respiratory-syndrome coronavirus-2 (SARS-CoV-2) virus. A major problem with state-of-the-art UV inactivation technology is that it is based on UV lamps, which have limited efficiency, require high power, large doses, and long irradiation times. These drawbacks limit the use of UV lamps in air filtering systems and other applications. To address these limitations, herein we report on the fabrication of a device comprising a pulsed nanosecond 266 nm UV laser coupled to an integrating cavity (LIC) composed of a UV reflective material, polytetrafluoroethylene. Previous UV lamp inactivation cavities were based on polished walls with specular reflections, but the diffuse reflective UV ICs were not thoroughly explored for virus inactivation. Our results show that LIC device can inactivate several respiratory viruses including SARS-CoV-2, at ~ 1 ms effective irradiation time, with > 2 orders of magnitude higher efficiency compared to UV lamps. The demonstrated 3 orders of magnitude cavity enhancement relative to direct exposure is crucial for the development of efficient real-time UV air and water purification systems. To the best of our knowledge this is the first demonstration of LIC application for broad viral inactivation with high efficiency.


Subject(s)
COVID-19 , Viruses , Disinfection/methods , Humans , Lasers , SARS-CoV-2 , Ultraviolet Rays , Virus Inactivation/radiation effects
6.
Sci Rep ; 12(1): 5869, 2022 04 07.
Article in English | MEDLINE | ID: covidwho-1921684

ABSTRACT

The ongoing COVID-19 global pandemic has necessitated evaluating various disinfection technologies for reducing viral transmission in public settings. Ultraviolet (UV) radiation can inactivate pathogens and viruses but more insight is needed into the performance of different UV wavelengths and their applications. We observed greater than a 3-log reduction of SARS-CoV-2 infectivity with a dose of 12.5 mJ/cm2 of 254 nm UV light when the viruses were suspended in PBS, while a dose of 25 mJ/cm2 was necessary to achieve a similar reduction when they were in an EMEM culture medium containing 2%(v/v) FBS, highlighting the critical effect of media in which the virus is suspended, given that SARS-CoV-2 is always aerosolized when airborne or deposited on a surface. It was found that SARS-CoV-2 susceptibility (a measure of the effectiveness of the UV light) in a buffer such as PBS was 4.4-fold greater than that in a cell culture medium. Furthermore, we discovered the attenuation of UVC disinfection by amino acids, vitamins, and niacinamide, highlighting the importance of determining UVC dosages under a condition close to aerosols that wrap the viruses. We developed a disinfection model to determine the effect of the environment on UVC effectiveness with three different wavelengths, 222 nm, 254 nm, and 265 nm. An inverse correlation between the liquid absorbance and the viral susceptibility was observed. We found that 222 nm light was most effective at reducing viral infectivity in low absorbing liquids such as PBS, whereas 265 nm light was most effective in high absorbing liquids such as cell culture medium. Viral susceptibility was further decreased in N95 masks with 222 nm light being the most effective. The safety of 222 nm was also studied. We detected changes to the mechanical properties of the stratum corneum of human skins when the 222 nm accumulative exposure exceeded 50 J/cm2.The findings highlight the need to evaluate each UV for a given application, as well as limiting the dose to the lowest dose necessary to avoid unnecessary exposure to the public.


Subject(s)
COVID-19 , Viruses , COVID-19/prevention & control , Disinfection , Humans , SARS-CoV-2 , Ultraviolet Rays , Virus Inactivation/radiation effects
7.
J Photochem Photobiol B ; 233: 112503, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1907356

ABSTRACT

Numerous studies have demonstrated that SARS-CoV-2 can be inactivated by ultraviolet (UV) radiation. However, there are few data available on the relative efficacy of different wavelengths of UV radiation and visible light, which complicates assessments of UV decontamination interventions. The present study evaluated the effects of monochromatic radiation at 16 wavelengths from 222 nm through 488 nm on SARS-CoV-2 in liquid aliquots and dried droplets of water and simulated saliva. The data were used to generate a set of action spectra which quantify the susceptibility of SARS-CoV-2 to genome damage and inactivation across the tested wavelengths. UVC wavelengths (≤280 nm) were most effective for inactivating SARS-CoV-2, although inactivation rates were dependent on sample type. Results from this study suggest that UV radiation can effectively inactivate SARS-CoV-2 in liquids and dried droplets, and provide a foundation for understanding the factors which affect the efficacy of different wavelengths in real-world settings.


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection/methods , Humans , Light , Ultraviolet Rays , Virus Inactivation/radiation effects
8.
J Microbiol Immunol Infect ; 55(1): 166-169, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1700704

ABSTRACT

This was a preliminary study on ultraviolet C (UVC) irradiation for SARS-CoV-2-contaminated hospital environments. Forty-eight locations were tested for SARS-CoV-2 using RT-PCR (33.3% contamination rate). After series dosages of 222-nm UVC irradiation, samples from the surfaces were negative at 15 s irradiation at 2 cm length (fluence: 81 mJ/cm2).


Subject(s)
COVID-19 , SARS-CoV-2 , Disinfection , Humans , Ultraviolet Rays , Virus Inactivation/radiation effects
9.
Virol J ; 19(1): 29, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1690906

ABSTRACT

Ultraviolet (UV) light has previously been established as useful method of disinfection, with demonstrated efficacy to inactivate a broad range of microorganisms. The advent of ultraviolet light-emitting diodes provides advantages in ease of disinfection, in that there can be delivery of germicidal UV with the same light unit that delivers standard white light to illuminate a room. Herein we demonstrate the efficacy and feasibility of ultraviolet light-emitting diodes as a means of decontamination by inactivating two distinct virus models, human coronavirus 229E and human immunodeficiency virus. Importantly, the same dose of ultraviolet light that inactivated human viruses also elicited complete inactivation of ultraviolet-resistant bacterial spores (Bacillus pumilus), a gold standard for demonstrating ultraviolet-mediated disinfection. This work demonstrates that seconds of ultraviolet light-emitting diodes (UV-LED) exposure can inactivate viruses and bacteria, highlighting that UV-LED could be a useful and practical tool for broad sanitization of public spaces.


Subject(s)
Coronavirus 229E, Human , Disinfection , HIV-1 , Ultraviolet Rays , Virus Inactivation/radiation effects , Coronavirus 229E, Human/radiation effects , Disinfection/methods , HIV-1/radiation effects , Humans
10.
J Hazard Mater ; 405: 124043, 2021 03 05.
Article in English | MEDLINE | ID: covidwho-1635125

ABSTRACT

In this review, we present the environmental perspectives of the viruses and antiviral drugs related to SARS-CoV-2. The present review paper discusses occurrence, fate, transport, susceptibility, and inactivation mechanisms of viruses in the environment as well as environmental occurrence and fate of antiviral drugs, and prospects (prevalence and occurrence) of antiviral drug resistance (both antiviral drug resistant viruses and antiviral resistance in the human). During winter, the number of viral disease cases and environmental occurrence of antiviral drug surge due to various biotic and abiotic factors such as transmission pathways, human behaviour, susceptibility, and immunity as well as cold climatic conditions. Adsorption and persistence critically determine the fate and transport of viruses in the environment. Inactivation and disinfection of virus include UV, alcohol, and other chemical-base methods but the susceptibility of virus against these methods varies. Wastewater treatment plants (WWTPs) are major reserviors of antiviral drugs and their metabolites and transformation products. Ecotoxicity of antiviral drug residues against aquatic organisms have been reported, however more threatening is the development of antiviral resistance, both in humans and in wild animal reservoirs. In particular, emergence of antiviral drug-resistant viruses via exposure of wild animals to high loads of antiviral residues during the current pandemic needs further evaluation.


Subject(s)
Antiviral Agents , Drug Resistance, Viral/drug effects , Environmental Microbiology , Environmental Pollutants , SARS-CoV-2 , Virus Inactivation , Adsorption , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Antiviral Agents/toxicity , Aquatic Organisms/drug effects , COVID-19/epidemiology , COVID-19/etiology , Ecotoxicology , Environmental Pollutants/chemistry , Environmental Pollutants/therapeutic use , Environmental Pollutants/toxicity , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Seasons , Virus Inactivation/drug effects , Virus Inactivation/radiation effects , Water Purification , COVID-19 Drug Treatment
11.
ACS Appl Mater Interfaces ; 14(4): 4892-4898, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1633913

ABSTRACT

This paper presents results of a study of a new cationic oligomer that contains end groups and a chromophore affording inactivation of SARS-CoV-2 by visible light irradiation in solution or as a solid coating on paper wipes and glass fiber filtration substrates. A key finding of this study is that the cationic oligomer with a central thiophene ring and imidazolium charged groups gives outstanding performance in both the killing of E. coli bacterial cells and inactivation of the virus at very short times. Our introduction of cationic N-methyl imidazolium groups enhances the light activation process for both E. coli and SARS-CoV-2 but dampens the killing of the bacteria and eliminates the inactivation of the virus in the dark. For the studies with this oligomer in solution at a concentration of 1 µg/mL and E. coli, we obtain 3 log killing of the bacteria with 10 min of irradiation with LuzChem cool white lights (mimicking indoor illumination). With the oligomer in solution at a concentration of 10 µg/mL, we observe 4 log inactivation (99.99%) in 5 min of irradiation and total inactivation after 10 min. The oligomer is quite active against E. coli on oligomer-coated paper wipes and glass fiber filter supports. The SARS-CoV-2 is also inactivated by oligomer-coated glass fiber filter papers. This study indicates that these oligomer-coated materials may be very useful as wipes and filtration materials.


Subject(s)
Antiviral Agents/pharmacology , COVID-19/therapy , SARS-CoV-2/radiation effects , COVID-19/genetics , COVID-19/virology , Cations/pharmacology , Escherichia coli/drug effects , Escherichia coli/radiation effects , Humans , Light , Phototherapy , SARS-CoV-2/pathogenicity , Ultraviolet Rays , Virus Inactivation/drug effects , Virus Inactivation/radiation effects
12.
J Infect Dis ; 225(4): 587-592, 2022 02 15.
Article in English | MEDLINE | ID: covidwho-1569705

ABSTRACT

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since 2019 has made mask-wearing, physical distancing, hygiene, and disinfection complementary measures to control virus transmission. Especially for health facilities, we evaluated the efficacy of an UV-C autonomous robot to inactivate SARS-CoV-2 desiccated on potentially contaminated surfaces. ASSUM (autonomous sanitary sterilization ultraviolet machine) robot was used in an experimental box simulating a hospital intensive care unit room. Desiccated SARS-CoV-2 samples were exposed to UV-C in 2 independent runs of 5, 12, and 20 minutes. Residual virus was eluted from surfaces and viral titration was carried out in Vero E6 cells. ASSUM inactivated SARS-CoV-2 by ≥ 99.91% to ≥ 99.99% titer reduction with 12 minutes or longer of UV-C exposure and onwards and a minimum distance of 100cm between the device and the SARS-CoV-2 desiccated samples. This study demonstrates that ASSUM UV-C device is able to inactivate SARS-CoV-2 within a few minutes.


Subject(s)
COVID-19 , Robotics , SARS-CoV-2/radiation effects , Sterilization/methods , Ultraviolet Rays , Virus Inactivation/radiation effects , COVID-19/prevention & control , Hospitals , Humans
13.
Sci Rep ; 11(1): 22612, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1526106

ABSTRACT

This paper proposes an investigating SARS-CoV-2 inactivation on surfaces with UV-C LED irradiation using our in-house-developed ray-tracing simulator. The results are benchmarked with experiments and Zemax OpticStudio commercial software simulation to demonstrate our simulator's easy accessibility and high reliability. The tool can input the radiant profile of the flexible LED source and accurately yield the irradiance distribution emitted from an LED-based system in 3D environments. The UV-C operating space can be divided into the safe, buffer, and germicidal zones for setting up a UV-C LED system. Based on the published measurement data, the level of SARS-CoV-2 inactivation has been defined as a function of UV-C irradiation. A realistic case of public space, i.e., a food court in Singapore, has been numerically investigated to demonstrate the relative impact of environmental UV-C attenuation on the SARS-CoV-2 inactivation. We optimise a specific UV-C LED germicidal system and its corresponding exposure time according to the simulation results. These ray-tracing-based simulations provide a useful guideline for safe deployment and efficient design for germicidal UV-C LED technology.


Subject(s)
SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , Computer Simulation , Disinfection/instrumentation , Imaging, Three-Dimensional , Singapore , Sterilization/instrumentation
14.
Appl Environ Microbiol ; 87(22): e0153221, 2021 10 28.
Article in English | MEDLINE | ID: covidwho-1494943

ABSTRACT

Effective disinfection technology to combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can help reduce viral transmission during the ongoing COVID-19 global pandemic and in the future. UV devices emitting UVC irradiation (200 to 280 nm) have proven to be effective for virus disinfection, but limited information is available for SARS-CoV-2 due to the safety requirements of testing, which is limited to biosafety level 3 (BSL3) laboratories. In this study, inactivation of SARS-CoV-2 in thin-film buffered aqueous solution (pH 7.4) was determined across UVC irradiation wavelengths of 222 to 282 nm from krypton chloride (KrCl*) excimers, a low-pressure mercury-vapor lamp, and two UVC light-emitting diodes. Our results show that all tested UVC devices can effectively inactivate SARS-CoV-2, among which the KrCl* excimer had the best disinfection performance (i.e., highest inactivation rate). The inactivation rate constants of SARS-CoV-2 across wavelengths are similar to those for murine hepatitis virus (MHV) from our previous investigation, suggesting that MHV can serve as a reliable surrogate of SARS-CoV-2 with a lower BSL requirement (BSL2) during UV disinfection tests. This study provides fundamental information on UVC's action on SARS-CoV-2 and guidance for achieving reliable disinfection performance with UVC devices. IMPORTANCE UV light is an effective tool to help stem the spread of respiratory viruses and protect public health in commercial, public, transportation, and health care settings. For effective use of UV, there is a need to determine the efficiency of different UV wavelengths in killing pathogens, specifically SARS-CoV-2, to support efforts to control the ongoing COVID-19 global pandemic and future coronavirus-caused respiratory virus pandemics. We found that SARS-CoV-2 can be inactivated effectively using a broad range of UVC wavelengths, and 222 nm provided the best disinfection performance. Interestingly, 222-nm irradiation has been found to be safe for human exposure up to thresholds that are beyond those effective for inactivating viruses. Therefore, applying UV light from KrCl* excimers in public spaces can effectively help reduce viral aerosol or surface-based transmissions.


Subject(s)
Disinfection/methods , SARS-CoV-2/radiation effects , Virus Inactivation/radiation effects , Animals , Bacteriophage phi 6/radiation effects , COVID-19/prevention & control , COVID-19/transmission , Coronavirus 229E, Human/radiation effects , Disinfection/instrumentation , Humans , Mice , Murine hepatitis virus/radiation effects , Ultraviolet Rays
15.
Sci Rep ; 11(1): 19930, 2021 10 07.
Article in English | MEDLINE | ID: covidwho-1462026

ABSTRACT

Transmission of SARS-CoV-2 by aerosols has played a significant role in the rapid spread of COVID-19 across the globe. Indoor environments with inadequate ventilation pose a serious infection risk. Whilst vaccines suppress transmission, they are not 100% effective and the risk from variants and new viruses always remains. Consequently, many efforts have focused on ways to disinfect air. One such method involves use of minimally hazardous 222 nm far-UVC light. Whilst a small number of controlled experimental studies have been conducted, determining the efficacy of this approach is difficult because chamber or room geometry, and the air flow within them, influences both far-UVC illumination and aerosol dwell times. Fortunately, computational multiphysics modelling allows the inadequacy of dose-averaged assessment of viral inactivation to be overcome in these complex situations. This article presents the first validation of the WYVERN radiation-CFD code for far-UVC air-disinfection against survival fraction measurements, and the first measurement-informed modelling approach to estimating far-UVC susceptibility of viruses in air. As well as demonstrating the reliability of the code, at circa 70% higher, our findings indicate that aerosolized human coronaviruses are significantly more susceptible to far-UVC than previously thought.


Subject(s)
Coronavirus 229E, Human/radiation effects , Coronavirus Infections/prevention & control , Coronavirus OC43, Human/radiation effects , Disinfection/methods , Ultraviolet Rays , Virus Inactivation/radiation effects , Aerosols/isolation & purification , Air Microbiology , COVID-19/prevention & control , Computer Simulation , Coronavirus 229E, Human/isolation & purification , Coronavirus 229E, Human/physiology , Coronavirus OC43, Human/isolation & purification , Coronavirus OC43, Human/physiology , Disinfection/instrumentation , Equipment Design , Humans , Models, Biological
16.
Sci Rep ; 11(1): 19470, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447318

ABSTRACT

The germicidal potential of specific wavelengths within the electromagnetic spectrum is an area of growing interest. While ultra-violet (UV) based technologies have shown satisfactory virucidal potential, the photo-toxicity in humans coupled with UV associated polymer degradation limit their use in occupied spaces. Alternatively, longer wavelengths with less irradiation energy such as visible light (405 nm) have largely been explored in the context of bactericidal and fungicidal applications. Such studies indicated that 405 nm mediated inactivation is caused by the absorbance of porphyrins within the organism creating reactive oxygen species which result in free radical damage to its DNA and disruption of cellular functions. The virucidal potential of visible-light based technologies has been largely unexplored and speculated to be ineffective given the lack of porphyrins in viruses. The current study demonstrated increased susceptibility of lipid-enveloped respiratory pathogens of importance such as SARS-CoV-2 (causative agent of COVID-19) and influenza A virus to 405 nm, visible light in the absence of exogenous photosensitizers thereby indicating a potential alternative porphyrin-independent mechanism of visible light mediated viral inactivation. These results were obtained using less than expected irradiance levels which are considered safe for humans and commercially achievable. Our results support further exploration of the use of visible light technology for the application of continuous decontamination in occupied areas within hospitals and/or infectious disease laboratories, specifically for the inactivation of respiratory pathogens such as SARS-CoV-2 and Influenza A.


Subject(s)
Disinfection/methods , Influenza A Virus, H1N1 Subtype/radiation effects , SARS-CoV-2/radiation effects , Disinfection/instrumentation , Dose-Response Relationship, Radiation , Encephalomyocarditis virus/radiation effects , Light , Time Factors , Virus Inactivation/radiation effects
17.
Photochem Photobiol ; 98(2): 471-483, 2022 03.
Article in English | MEDLINE | ID: covidwho-1441853

ABSTRACT

It has been demonstrated in laboratory environments that ultraviolet-C (UVC) light is effective at inactivating airborne viruses. However, due to multiple parameters, it cannot be assumed that the air inside a room will be efficiently disinfected by commercial germicidal ultraviolet (GUV) systems. This research utilizes numerical simulations of airflow, viral spread, inactivation by UVC and removal by mechanical ventilation in a typical classroom. The viral load in the classroom is compared for conventional upper-room GUV and the emerging "Far-UVC." In our simulated environment, GUV is shown to be effective in both well and poorly ventilated rooms, with greatest benefit in the latter. At current exposure limits, 18 commercial Far-UVC systems were as effective at reducing viral load as a single upper-room GUV. Improvements in Far-UVC irradiation distribution and recently proposed increases to exposure limits would dramatically increase the efficacy of Far-UVC devices. Modifications to current Far-UVC devices, which would improve their real-world efficacy, could be implemented now without requiring legislative change. The prospect of increased safety limits coupled with our suggested technological modifications could usher in a new era of safe and rapid whole room air disinfection in occupied indoor spaces.


Subject(s)
COVID-19 , COVID-19/prevention & control , Disinfection/methods , Humans , SARS-CoV-2 , Ultraviolet Rays , Virus Inactivation/radiation effects
18.
J Photochem Photobiol B ; 224: 112319, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1433572

ABSTRACT

The germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses. First, HCoV-NL63 coronavirus inactivation by sUV-exposure was confirmed employing (i) viral plaque assays, (ii) RT-qPCR detection of viral genome replication, and (iii) infection-induced stress response gene expression array analysis. Next, a detailed dose-response relationship of SARS-CoV-2 coronavirus inactivation by sUV was elucidated, suggesting a half maximal suppression of viral infectivity at low sUV doses. Likewise, extended sUV exposure of SARS-CoV-2 blocked cellular infection as revealed by plaque assay and stress response gene expression array analysis. Moreover, comparative (HCoV-NL63 versus SARS-CoV-2) single gene expression analysis by RT-qPCR confirmed that sUV exposure blocks coronavirus-induced redox, inflammatory, and proteotoxic stress responses. Based on our findings, we estimate that solar ground level full spectrum UV light impairs coronavirus infectivity at environmentally relevant doses. Given the urgency and global scale of the unfolding SARS-CoV-2 pandemic, these prototype data suggest feasibility of solar UV-induced viral inactivation, an observation deserving further molecular exploration in more relevant exposure models.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus NL63, Human/radiation effects , Respiratory Tract Infections/prevention & control , SARS-CoV-2/radiation effects , Sunlight , Ultraviolet Rays , Animals , Cell Line , Chlorocebus aethiops , Coronavirus NL63, Human/physiology , Epithelial Cells/virology , Genome, Viral/radiation effects , Humans , SARS-CoV-2/physiology , Transcriptome/radiation effects , Viral Plaque Assay , Virus Inactivation/radiation effects , Virus Replication/radiation effects
19.
Photochem Photobiol ; 97(3): 532-541, 2021 05.
Article in English | MEDLINE | ID: covidwho-1388390

ABSTRACT

During the current SARS-CoV-2 and tuberculosis global pandemics, public health and infection prevention and control professionals wrestle with cost-effective means to control airborne transmission. One technology recommended by Centers for Disease Control and Prevention and the World Health Organization for lowering indoor concentration of these and other microorganisms and viruses is upper-room ultraviolet 254 nm (UVC254 ) systems. Applying both a material balance as well as some nondimensional parameters developed by Rudnick and First, the impact of several critical parameters and their effect on the fraction of microorganisms surviving UVC254 exposure was evaluated. Vertical airspeed showed a large impact at velocities <0.05 m s-1 but a lesser effect at velocities >0.05 m s-1 . In addition, the efficacy of any upper-room UVC system is influenced greatly by the mean room fluence rate as opposed to a simple volume- or area-based dosing criteria. An alternative UVC254 dosing strategy was developed based on the fluence rate as a function of the UVC254 luminaire output (W) and the square root of the product of the room volume and the ceiling height.


Subject(s)
Air Microbiology , Disinfection/instrumentation , Disinfection/methods , Lighting , Ultraviolet Rays , Air Pollution, Indoor/prevention & control , Animals , COVID-19/prevention & control , Environment, Controlled , Infection Control/methods , SARS-CoV-2/radiation effects , Virus Inactivation/radiation effects
20.
Photochem Photobiol ; 97(3): 549-551, 2021 05.
Article in English | MEDLINE | ID: covidwho-1388389

ABSTRACT

Although the environmental control measure of ultraviolet germicidal irradiation (UVGI) for disinfection has not been widely used in the United States and some parts of the world in the past few decades, this technology has been well applied in Russia. UVGI technology has been particularly useful with regard to limiting TB transmission in medical facilities. There is good evidence that UV-C (180-280 nm) air disinfection can be a helpful intervention in reducing transmission of the SARS-CoV-2 virus.


Subject(s)
COVID-19/prevention & control , Disinfection/methods , Hospitals/standards , SARS-CoV-2/radiation effects , Ultraviolet Rays , Virus Inactivation/radiation effects , Air Microbiology , Air Pollution, Indoor/prevention & control , COVID-19/epidemiology , Disinfection/instrumentation , Humans , Infection Control , Russia
SELECTION OF CITATIONS
SEARCH DETAIL